Dipende dall'algoritmo basato sulla successione del Fibonacci partendo dal diametro di base della pigna. L'elemento comune di tutte le pigne è rappresentato dalla spirale logaritmica detta anche "spirale aurea", attraverso la quale lo sviluppo armonico della forma è legato alla necessità degli esseri viventi di accrescere "secondo natura" in maniera ottimale e meno dispendiosa possibile.
Esaminando in maniera più approfondita la forma di fiori come la margherita, il girasole o una comune pigna notiamo che esiste una stretta relazione con i numeri di Fibonacci. Sulla testa di un tipico girasole, per esempio, il numero delle spirali rientra molto spesso in questo schema: 89 spirali che si irradiano ripide in senso orario; 55 che si muovono in senso antiorario e 34 che si muovono in senso orario ma meno ripido. Il più grande girasole che si sia mai conosciuto aveva 144, 89 e 55 spirali. Così in molte specie vegetali, prime fra tutte le Astaracee (girasoli, margherite, ecc.), il numero dei petali di ogni fiore è di solito un numero di Fibonacci, come 5, 13, 55 o perfino 377, come nel caso della diaccola. Le brattee delle pigne si dispongono in due serie di spirali dal ramo verso l'esterno - una in senso orario e l'altra in senso antiorario. Uno studio di oltre 4000 pigne di dieci specie di pino rivelò che oltre il 98 per cento di esse conteneva un numero di Fibonacci nelle spirali che si diramavano in ogni direzione. Inoltre, i due numeri erano adiacenti, o adiacenti saltandone uno, nella sequenza di Fibonacci - per esempio 8 spirali in un senso e 13 nell'altro, o 8 spirali in un senso e 21 nell'altro. Le scaglie degli ananas presentano un'aderenza ancora più costante ai fenomeni di Fibonacci: non una sola eccezione fu trovata in un test compiuto su 2000 ananas.